Papers

35 posts

Discovering metabolic disease gene interactions by correlated effects on cellular morphology

Yang Jiao, Umer Ahmed, M.F. Michelle Sim, Andrea Bejar, Xiaolan Zhang, M. Mesbah Uddin Talukder, Robert Rice, Jason Flannick, Anna I. Podgornaia, Dermot F. Reilly, Jesse M. Engreitz, Maria Kost-Alimova, Kate Hartland, Josep-Maria Mercader, Sara Georges, Vilas Wagh, Marija Tadin-Strapps, John G. Doench, J. Michael Edwardson, Justin J. Rochford, Evan D. Rosen, Amit R. Majithia

Objective: Impaired expansion of peripheral fat contributes to the pathogenesis of insulin resistance and Type 2 Diabetes (T2D). We aimed to
identify novel diseaseegene interactions during adipocyte differentiation.
Methods: Genes in disease-associated loci for T2D, adiposity and insulin resistance were ranked according to expression in human adipocytes.
The top 125 genes were ablated in human pre-adipocytes via CRISPR/CAS9 and the resulting cellular phenotypes quantified during adipocyte
differentiation with high-content microscopy and automated image analysis. Morphometric measurements were extracted from all images and
used to construct morphologic profiles for each gene.
Results: Over 107 morphometric measurements were obtained. Clustering of the morphologic profiles accross all genes revealed a group of 14
genes characterized by decreased lipid accumulation, and enriched for known lipodystrophy genes. For two lipodystrophy genes, BSCL2 and
AGPAT2, sub-clusters with PLIN1 and CEBPA identifed by morphological similarity were validated by independent experiments as novel proteine
protein and gene regulatory interactions.
Conclusions: A morphometric approach in adipocytes can resolve multiple cellular mechanisms for metabolic disease loci; this approach
enables mechanistic interrogation of the hundreds of metabolic disease loci whose function still remains unknown.

Mol Metab. 2019 Jun; 24: 108–119. https://doi.org/10.1016/j.molmet.2019.03.001. Epub 2019 Mar 13.

PubMed

PDF

 

Exposure of adipocytes to bisphenol-A in vitro interferes with insulin action without enhancing adipogenesis

De Filippis E, Li T, Rosen ED

Bisphenol-A (BPA) is a lipophilic compound widely used in the manufacture of plastic items and thought to play a role in the growing obesity epidemic. Recent publications suggest that BPA may have a pro-adipogenic effect. Here we explore the effect of low, but environmentally relevant, concentrations of BPA on adipogenesis using a variety of cellular models. Mouse 3T3-L1, C3H10T1/2 and human adipose-derived stromal cells (hADSCs) were cultured with BPA concentrations ranging from 0.1nM to 100μM. We failed to observe positive effects on differentiation at any dose or in any model. 3T3-L1 adipocytes differentiated with high concentrations of BPA showed decreased mRNA expression of several adipocyte markers. Mature adipocytes differentiated in the presence of BPA were insulin resistant, with an approximate 25% reduction in insulin-stimulated glucose uptake. This was accompanied by a significant decrease in insulin-stimulated Akt phosphorylation, and an increase in mRNA levels of inflammatory markers (i.e. IL-6, TNFα). In conclusion, low, but environmentally relevant, doses of BPA may contribute to the development of a chronic, low-grade inflammatory state in exposed adipocytes, which in turn may affect adipose tissue insulin sensitivity, independent of adipogenesis. These studies suggest an alternative mechanism by which BPA may contribute to the development of obesity.

PLoS One. 2018 Aug 22;13(8):e0201122. doi: 10.1371/journal.pone.0201122. eCollection 2018

PubMed

PDF

Brown Adipose Tissue Controls Skeletal Muscle Function via the Secretion of Myostatin

Kong X, Yao T, Zhou P, Kazak L, Tenen D, Lyubetskaya A, Dawes BA, Tsai L, Kahn BB, Spiegelman BM, Liu T, Rosen ED

Skeletal muscle and brown adipose tissue (BAT) are functionally linked, as exercise increases browning via secretion of myokines. It is unknown whether BAT affects muscle function. Here, we find that loss of the transcription factor IRF4 in BAT (BATI4KO) reduces exercise capacity, mitochondrial function, ribosomal protein synthesis, and mTOR signaling in muscle and causes tubular aggregate formation. Loss of IRF4 induces myogenic gene expression in BAT, including the secreted factor myostatin, a known inhibitor of muscle function. Reducing myostatin via neutralizing antibodies or soluble receptor rescues the exercise capacity of BATI4KO mice. In addition, overexpression of IRF4 in brown adipocytes reduces serum myostatin and increases exercise capacity in muscle. Finally, mice housed at thermoneutrality have reduced IRF4 in BAT, lower exercise capacity, and elevated serum myostatin; these abnormalities are corrected by excising BAT. Collectively, our data point to an unsuspected level of BAT-muscle crosstalk driven by IRF4 and myostatin.

Cell Metab. 2018 Oct 2;28(4):631-643.e3. doi: 10.1016/j.cmet.2018.07.004. Epub 2018 Aug 2

PubMed

PDF